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Smart patterning for topological pumping of elastic
surface waves
Shaoyun Wang1†, Zhou Hu2†, Qian Wu1†, Hui Chen3, Emil Prodan4, Rui Zhu2*, Guoliang Huang1*

Topological pumping allows waves to navigate a sample undisturbed by disorders and defects. We demonstrate
this phenomenon with elastic surface waves by strategically patterning an elastic surface to create a synthetic
dimension. The surface is decorated with arrays of resonating pillars that are connected by spatially slow-varying
coupling bridges and support eigenmodes located below the sound cone. We establish a connection between
the collective dynamics of the pillars and that of electrons in a magnetic field by developing a tight-binding
model and a WKB (Wentzel-Kramers-Brillouin) analysis. This enables us to predict the topological pumping
pattern, which we validate through numerical and experimental steering of waves from one edge to the
other. Furthermore, we observe the immune nature of the topologically pumped surface waves to disorder
and defects. The combination of surface patterning and WKB analysis provides a versatile platform for control-
ling surface waves and exploring topological matter in higher dimensions.
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INTRODUCTION
Topological matter is a rapidly growing field in which topological
concepts are exploited to discover and classify new phases of matter
(1–4). In this context, a hallmark achievement was the discovery of
the integer quantum Hall effect (5). In the past decade, topological
phases analogous to quantum Hall insulators have been engineered
across a wide range of time-modulated platforms, including elec-
tronics (6–8), photonics (9–14), acoustics (15–18), and mechanics
(19–24). The existence of the conventional gapless edge states and
surface states is guaranteed by the bulk-boundary correspondence.
These time-dependent systems can provide outstanding opportuni-
ties not possible with passive materials, enabled by the high control-
lability and flexibility of these platforms. However, a physical
realization of a dynamically controlled topological pumping that
produces topological transport is extremely challenging because ex-
ternal or active physical fields are typically needed (25).

To overcome the challenges associated with time-modulated
system, rendering synthetic dimensions via space modulations
was recently suggested because it does not require any active mate-
rials or other external mechanisms to break the time-reversal sym-
metry (26, 27). The phases of the space modulations can be used as
adiabatic parameters that augment the physical space. It is intrigu-
ing to see these phases as additional global degrees of freedom,
usually called phasons, living on a torus. The central idea of synthet-
ic dimensions is to exploit and harness such degrees of freedom with
atoms, photons, or phonons to mimic the dynamic motion along
extra spatial directions. The key advantage of synthetic dimensions
is that pumping parameters can be engineered very naturally in the
strength of the couplings along the extra dimension. Synthetic di-
mensions have led to new discoveries of the two-dimensional (2D)
and 4D quantum Hall systems in ultracold atomic gases (28, 29),

photonics (30–32), and acoustics and mechanics (33–35) because
of their flexibility. Rendering of the synthetic space is growing
into one of the most appealing approaches to control and steer to-
pological wave transport in different systems.

Surface elastic waves are a class of polarized waves that propagate
on the surface of a semi-infinite elastic medium. They are confined
within a superficial region whose thickness is comparable with their
wavelength (36). Manipulating surface waves has been of consider-
able interest with widespread applications in earthquake mitigation,
nondestructive evaluation, wave filtering, and sensing (37–39). On
the basis of the Bragg scattering and local resonance mechanisms,
manipulation and control of surface waves have been recently inves-
tigated in the phononic and metamaterial community for various
applications such as exotic wave transmission and reflection, wave
focusing, and cloaking (40–42). Among existing approaches, the
metamaterial with pillar-type resonators is regarded as one of the
most promising microstructure designs because of their simple
structure and process-friendly fabrication. However, it is not
trivial to apply pillar-type metamaterials for the topological
surface wave transport. There is of fundamental and practical signif-
icance to physically realize space-modulated pillar-type metamate-
rials for topological surface wave transport along desired orbits
(43, 44).

In this study, we present theoretical, numerical, and experimen-
tal investigations of Rayleigh wave topological pumping by leverag-
ing a pillar-based platform with space modulations. The proposed
structures can be described as aperiodic mechanical wave channels
carrying different phason values that are stacked and coupled with
each other. By slowly varying the phason along the stacking direc-
tion, we demonstrate here that, with such an approach, we can
explore any continuous orbit inside the phason space and even
control the speed along the path to shape the surface pumped
pattern. As a result, we can render these abstract trajectories, occur-
ring in the synthetic dimensions, on the physical dimension along
the stackings. In turn, this enables us to control the propagation of
the surface waves in space and the temporal phases of the signals.

With the control over the phason, we experimentally demon-
strate edge-to-edge topological wave transport on the space-
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modulated mechanical metasurface, which is robust against random
fluctuations in the couplings. The analytical study of pumping
process under adiabatic condition is formulated by using the
Wentzel-Kramers-Brillouin (WKB) approximation and the modu-
lation functions of parameters with nontrivial topological phases
are also analytically obtained. On the basis of that, we further
explore various ways in which we can control these pumping pro-
cesses and validate topological mode steerings in time domain sim-
ulation. It is believed that our work breaks ground for engineering
applications, where the couplings in a space-modulated mechanical
metasurface can be programmed for selective and robust point-to-
point transport of surface wave signals.

RESULTS
Physical rendering of synthetic spaces
We start by explaining the principles of physical rendering of syn-
thetic spaces in the context of surface wave transport. Figure 1 (A
and B) shows our surface wave platform featuring a planar array
of elastic pillar-type resonators coupled horizontally and vertically
through thin plates (see Materials and Methods for fabrication
details). Each resonator is assigned an address (i,j) ∈ ℤ2 in the x-
z plane. The heights of the connecting plates in the x direction
are modulated according to the protocol hij = h0[1 + Δ0 cos(2πi/3
+ ϕj)], while the geometry of the connecting thin plate along the z

direction is uniform across the sample. Any such modulation has a
phase that can take any value in the abstract interval [0,2π], repre-
senting here the synthetic space. In a time-modulated setting, one
will dynamically drive the phase ϕ by rapid reconfigurations of the
systems (45). Instead, by setting the phason value of the j-th row as
ϕj ¼ ϕs þ ðϕf � ϕsÞ

j
N, with N being the total number of rows, we

effectively render the synthetic space along the z axis. The parame-
ters will be fixed as ϕs = 0.6π and ϕf = 1.4π.

As shown in Fig. 1A, each x directional row displays a unit cell
containing three pillars. The dispersion curves of the unit cell ob-
tained with COMSOL Multiphysics are shown in Fig. 1C. The com-
putation was carried out by imposing Floquet boundary conditions
in both x and z directions. Because the modulation amplitude Δ0 is
small, ϕj is irrelevant for the dispersion curves and can be assumed
as 0. Below the sound cone (white region), one can see three surface
wave branches, whose eigenmodes are localized on the surface and
decay quickly into the bulk (see the Supplementary Materials). The
region above the sound cone, shown in gray, is referred to as the
“bulk modes” region.

To facilitate the physical interpretation of the surface wave
pumping and illuminate the function of the phason, we develop a
discrete mass-spring model for the surface wave eigenmodes using
the mode-coupling theory. This model takes the form of the follow-
ing difference equation for the amplitudes ψi,j of the local

Fig. 1. Design principle and dispersion analysis. (A) Schematic illustration of the topological surface wave transport system. Each row in x corresponds to a supercell
that includes three unit cells (inset). (B) Photograph of the experimental sample fabricated out of aluminum by a milling machine. The piezoelectric actuator on the
bottom right serves as the excitation. (C) Numerically obtained dispersion curves (blue dots) for the unit cell withϕj = π. The orange curves represent the dispersion curves
of the discrete mass-spring model obtained by numerical fitting. The gray regions are filled with bulk modes. Their interfaces with the surface wave region define the
sound cone. (D) Dispersion diagram for the supercell terminated by free boundary conditions in the x direction and Floquet boundary conditions in the z direction. The
edge-bulk-edge (EBE) mode is represented by the magenta surface, whereas the bulk bands are indicated by gray surfaces. The orange cut plane corresponds to the
excitation frequency fc = 41.88 kHz. The interaction curve between excitation frequency plane and EBE surface gives the instantaneous wave number q(z) on which the
circle is right edge mode, the triangle is the bulk mode, and the square is the left edge mode. (E) The top, middle, and bottom panels are the corresponding eigenmodes
of supercell at ϕ = 0.6π (circle), π (triangle), and 1.4π (square) with q = π/a in (D).
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resonances carried by the individual pilars (see the Supplementary
Materials)

κ0ψi;j þ κh
i� 1;jψi� 1;j þ κh

i;jψiþ1;j þ κv½ψi;j� 1 � 2ψi;j þ ψi;jþ1�

¼ � M~ω2ψi;j ð1Þ

Here, M, ~ω, κ0, κv, and κh are interpreted as the effective mass;
angular frequency; and grounded, vertical, and horizontal spring
stiffnesses of the model, respectively. The values of these effective
parameters are determined by fitting the dispersion curves of the
continuous model (blue dots in Fig. 1C). Specifically, we obtain
M = 1 kg, κ0 = 49.6 GN/m, κv = 1.9 GN/m, and
κh
i;j ¼ κh

0½1þ Δcosð2iπ=3þ ϕjÞ�, where the modulation coefficients
read κh

0 ¼ 5:5 GN=m and Δ = 0.67. As shown in Fig. 1C, the con-
tinuous and discrete dispersion curves exhibit satisfactory agree-
ment, thereby demonstrating the reliability of the discrete model.

WKB-type analysis
By replacing the index j with the coordinate z = ja, we rewrite ψi,j =
ψi(z) and ϕj = ϕ(z), as well as

κh
i;j ¼ κh

i ðzÞ ¼ h0 1þ Δcos
2πi
3
þ ϕðzÞ

� �� �

ð2Þ

We also introduce the second-order central difference operator

δ2f ðzÞ ¼
f ðz þ aÞ � 2f ðzÞ þ f ðz � aÞ

a2 ð3Þ

In addition, a vector ψ(z) = [ψ0(z), ψ1(z), …, ψ3M(z)]T is defined
including all the mode coefficients. By doing so, the dispersion
equation (Eq. 1) can be written very compactly as

a2δ2ψðzÞ þ ½KðzÞ þ ω2�ψðzÞ ¼ 0 ð4Þ

in which normalized angular frequency ω satisfies ω2 ¼ ~ω2=κv and
K(z) is the matrix with the entries

KikðzÞ ¼ ½κ0δik þ κh
i ðzÞδi;kþ1 þ κh

i ðzÞδiþ1;k�=κv ð5Þ

where δik is the Kronecker delta. Equation 4 is very close in spirit
with the Schroedinger equation appearing in the setting of WKB
approximation theory (46, 21). The difference is that, instead of
dealing with a potential, we are dealing with the nondiagonal
matrix K(z), which, nevertheless, is slowly varying with z. In this
regime, the following WKB-type expansion is justified

ψðzÞ ¼ eiθðzÞ=a½ψð0ÞðzÞ þ aψð1ÞðzÞ þ � � �� ð6Þ

and, by keeping track of the powers of a, we can derive the exact
equations satisfied by each ψ (α). In particular, we find for the
leading term that this equation is (see the Supplementary Materials)

½KðzÞ þ ω2�ψð0ÞðzÞ ¼ 4sin2 δθðzÞ
2

� �

ψð0ÞðzÞ ð7Þ

where δθ(z) = [θ(z + a/2) − θ(z − a/2)]/a. This equation has solu-
tions of the form

ψnðzÞ ¼ AnðzÞe
i
Xξ¼z

ξ¼0
qnðξÞ

φnðzÞ þ oðaÞ ð8Þ

where φn(z) is the n-th eigenmode of the K(z) matrix

KðzÞφnðzÞ ¼ � μnðzÞφnðzÞ ð9Þ

at row z and qn(z) satisfies the equation

4sin2 qnðzÞ
2
þ μnðzÞ ¼ ω2 ð10Þ

As in the standard WKB theory (46), an analysis at the order-one
level of the asymptotic expansion enables us to pinpoint the z-de-
pendence amplitude An(z) (see the Supplementary Materials) and
to lastly present the complete set of solutions for the dispersion
(Eq. 4)

ψnðzÞ ¼
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � μnðzÞ4

p e
i
Xξ¼z

ξ¼0
qnðξÞ

φnðzÞ þ oðaÞ ð11Þ

We recall that the derivation of these solutions relies only on the
adiabatic evolution of the phason with z and no considerations of
long wavelengths or paraxial approximation were made. Thus, our
results cover the short-wavelength and nonparaxial regions. Last,
because our samples are finite, we need to impose free boundary
conditions on the top and bottom boundaries in the z direction.
In this case, the mode shape of the n-th eigenmode is in the form of

ψnðzÞ ¼
cnsinQnðzÞ þ dncosQnðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

n � μnðzÞ4
p φnðzÞ ð12Þ

where cn and dn are coefficients of superposition, ωn is the eigenfre-
quency, and QnðzÞ ¼

Pξ¼z
ξ¼0qnðξÞ is the dynamical phase produced

by our derivation.

Topological pumping
The complete set of solutions (Eq. 11) indicates that, when the
metasurface is excited at pulsation ω with a source placed at position
z = 0, it will resonate very strongly with the mode that has its reso-
nant frequency μn(z = 0) close to ω2. Thus, we have a mechanism to
selectively load a specific mode out of a fairly rich set of resonant
modes. Furthermore, Eq. (11) indicates that, with such a source
turned on, upon the inspection of row z, we will see the eigenmode
μn(z) of the 1D tight-binding operator K(z) (up to a multiplicative
factor). Because K(z) depends only on the phason value ϕ(z), i.e.,
K(z) = Kϕ(z), one can now see explicitly how the dependence of
the spectral properties of Kϕ on the phason has been rendered
along the z coordinate, for us to experience, measure and use its res-
onant modes in future applications. Furthermore, by design, the
phason is being pumped from ϕs to ϕf as the structure is examined
from bottom (z = 0) to the top (z = Na).

The spectrum of an entire row of resonators q-twisted Floquet
boundary conditions imposed in the z direction is reported in
Fig. 1D as a function of ϕ and q, and the topological edge modes
can be seen as the sheet colored in magenta. Taking a slice at a
fixed q reveals precisely one chiral edge band per edge and the
slopes of these bands are consistent with the values of the Chern
numbers (see the Supplementary Materials). Furthermore, exami-
nation of the eigenfunctions leads to the observation of right
edge, bulk, and left edge modes for ϕ = 0.6π, π, and 1.4π in the
top, middle, and bottom panels of Fig. 1E, respectively.
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Demonstration of topological surface wave transport
We now focus on the demonstration of the topological surface wave
transport. Experiments are first conducted on the system shown in
Fig. 1 (A and B). Figure 2 (A and B) illustrates the magnitude of y
directional displacement fields of the edge-bulk-edge (EBE) mode
from experiments at 42.45 kHz and from numerical simulations at
41.88 kHz, respectively. As a matter of fact, the measurement of the
y component is essentially equivalent to that of the z component
because the y component has measurable intensity and displays
the same spatial profiles of the EBE mode as the z component
because of their linear relationship (see the Supplementary Materi-
als). In addition, the experimentally measured frequency of the EBE
mode could be different from the simulated eigenfrequency because
of fabrication and material imperfections. To precisely determine
the EBE frequency in the experiment, we perform a thorough anal-
ysis of the frequency spectra derived from measurements taken at
the resonator with i = 2 and j = 18, as shown in Fig. 2C. After de-
liberately examining the mode shapes in each resonance peak, we
can determine the experimental EBE frequency as 42.45 kHz. It is
worth mentioning that frequency spectra measured at other loca-
tions also exhibit the same resonance peaks as observed in the
case of i = 2 and j = 18, albeit with different intensities (see the Sup-
plementary Materials). In other words, selecting different locations
for frequency response measurements results in the identical obser-
vation of the EBE mode. As shown in Fig. 2 (A and B), vertical os-
cillation of the field profile in z is observed featured with modal

nodes and antinodes, owing to the z-directional dynamical phase.
The experimental and numerical results provide satisfactory agree-
ment. To quantitatively compare the retrieved mode profile in Fig.
2B with the analytical solution (Eq. 12), we apply wavelet transform
and mode decomposition on the numerical mode profile. In detail,
we first divided the cuboid into nine columns. Then, the wavelet
transform technique is applied to the wave component of each
column to determine the corresponding coefficients. Last, we calcu-
late the average of the absolute values for these coefficients. The
outcome after linear interpolation is illustrated as a heatmap in
Fig. 2D. As a reference, a purple curve is given to provide the q-ϕ
relation at 41.88 kHz on the cut plane of the dispersion diagram (Fig
1D). Satisfactory agreement is found between the eigenmode anal-
ysis of the finite lattice and the dispersion diagram. Next, we adopt
mode decomposition on each of the 20 supercells along the z direc-
tion to determine the relative strengths of all modes. Figure 2E illus-
trates the corresponding modal coefficients that are normalized
with the maximum of coefficient at respective values of z. The
bases for mode decomposition are from the corresponding mass-
spring model whose parameters are extracted from Fig. 1C.
Because only 20 supercells are involved in the synthetic dimension,
the stiffness matrix does not evolve strictly adiabatically. As a result,
other bulk modes always coexist. However, the EBE mode, labeled
as the seventh mode in Fig. 2E, is always dominant in terms of
modal coefficients of all the supercells, meaning that the length of
the synthetic dimension is sufficiently long to approach adiabatic

Fig. 2. Topological surface pumping on the elastic surface with space modulated pillars. (A and B) Experimental (A) and numerical (B) modal profile of the mag-
nitude of the y directional (out-of-plane) displacement field at the frequencies f = 42.45 kHz and f = 41.88 kHz, respectively, by a piezoelectric patch (gray part in the
bottom of the cuboid) excitation. (C) Frequency spectrum of the resonator with indices i = 2 and j = 18 from experimental measurement. The resonance peak noted by red
dot is the EBEmode. (D) Thewavelet transform of the eigenmode from numerical simulation along synthetic dimension. The purple curve is the interaction curve from Fig.
1D. (E) The mode decomposition of the displacement field in (B) of each chain for different z.
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limit. The consistency of the results from wavelet transform and
mode decomposition analysis validates the correctness of the
WKB solution. Moreover, it is noteworthy to mention that the to-
pological pumping can occur at multiple frequencies, in addition to
the frequency that we have experimentally demonstrated (see the
Supplementary Materials). In the current design, the frequency
range to exhibit the topological pumping is approximately 1 kHz,
as evidenced by the frequency span of the magenta EBE surface
(Fig. 1D). To broaden the frequency range of the topological
pumping, one possibility to explore is the improvement of stiffness
of the connecting plates in the z direction. This adjustment would
result in the EBE surface at a broader frequency range.

We conduct the transient analysis for better showcasing the
pumping process. In particular, the right edge mode φn(0) (n = 7)
at the bottom supercell is excited by using a series of piezoelectric
patches, each attached on one side of each resonator (see Materials
and Methods). The polarization directions of these piezoelectric
patches are identical, while the applied voltages are distributed as
V0φn(0)fz(t), where V0 = 1 V denotes the voltage amplitude and
fz(t) is a 50-cycle tone burst signal fz(t) = H(50/fc − t)[1 −
cos(2πfct/50)] sin(2πfct) (Fig. 3, top), with H(t) being the Heaviside
function and fc = 41.88 kHz. Figure 3 (A to C) displays the
snapshots of surface wave propagation at representative time in-
stants in terms of the magnitude of total displacement field. It
should be mentioned that the total displacement field is very
similar to its z directional component according to our numerical
simulation. Initially, the right edge mode is excited on the bottom
at t = 0.5 ms (Fig. 3A). As time progresses, the wave packet propa-
gates in the synthetic dimension z and transitions into the bulk
mode at t = 2.5 ms (see Fig. 3B). Eventually, the left edge mode is
well formed on the top of the cuboid at t = 4 ms (Fig. 3C). The wave
packet will follow the same evolution path transitioning from the
left edge mode back to the right one if the transient simulation con-
tinues. A more detailed demonstration can be found in movie S1.

Robustness of topological surface wave transport
The geometric imperfections in sample fabrication are inevitable
because of the errors of millers of computer numerical control
(CNC) machines, as minor discrepancies between simulations
and measurement are visible in Fig. 2 (A and B). Nevertheless,
the topological surface wave transport is evidently observed,
thanks to some intriguing wave transport characteristics, such as ro-
bustness against geometrical impurities or defects. To illustrate this,
Fig. 4A shows a lattice defect constructed by removing 3 × 3 pillars
in the middle of the structure. The corresponding eigenfrequency of
the EBE mode of the defective cuboid (41.75 kHz) is quite close to
that of a perfect cuboid (41.88 kHz). The resulting spatial profile
shows that the topological pumping behavior survives and the
edge modes can be smoothly pumped from one side to the other
despite the large-scale geometric defect. Numerical analysis is also
conducted showing that large-scale defects at different positions
have minimal impact on the transport of the EBE mode, indicating
its topological robustness irrespective of the defect’s location (see
the Supplementary Materials). Moreover, we also consider the in-
fluence of geometrical disorders. In the sample fabrication, the ma-
chining error is about 0.02 mm for our sample. Therefore, we
introduce errors that satisfy a normal distribution N (0 mm,0.02
mm) to the dimensions of all resonators, including their lengths,
heights, and widths. The spatial profile of the EBE mode with dis-
orders is shown in Fig. 4B. The eigenfrequency of the EBE mode
shifts slightly, and the spatial profile agrees with that of the
perfect lattice in the x direction, indicating that the topological
pumping is robust against disorders. However, in the z direction,
we see that amplitudes of resonators in the top part are larger
than amplitudes of resonators in the bottom part, which is a sign
of Anderson localization. Because along the z direction, the dis-
placement field is harmonic, and the disorders make the eigenmode
localized at the top. It is also observed in the experiment (Fig. 2A)
that the eigenmode is localized at the top. Numerical simulations
indicate that the wave transport efficiency is nearly perfect, ap-
proaching unity if the low damping factor of the material is consid-
ered, which is also in good agreement with our experimental
measurement (see the Supplementary Materials). Therefore, the

Fig. 3. Time response of the topological surface wave transport. (A to C). The
magnitude of total displacement field at 0.5 ms, 2.5 ms, and 4 ms, respectively. A
50-cycle tone burst signal centered at 41.88 kHz is simulated on the bottom
supercell.

Fig. 4. Robust topological surface wave pumping. (A) The eigenmode of the
defective structure at 41.75 kHz. The defect is constructed by removing 3 by 3
pillars in the dotted line box (B) The eigenmode of the disordered structure
where a randomnormal distribution of errors is added on all geometric parameters
at 41.88 kHz.
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energy consumption associated with wave transport can be ignored
in the present passive system.

Application of topological wave transport as wave splitter
Surface wave topological pumping is promising for controlling wave
paths in practical applications. To show that, we design a topological
split-flow device that performs robust surface wave splitting. Other
topological pumping patterns with more complicated paths can be
engineered through selecting different phason trajectories (see the
Supplementary Materials). As shown in Fig. 5A, the splitter is an
assembly of two domains with opposite ϕ-z distributions, separated
by a domain wall (yellow in Fig. 5A). Specifically, the upper section
with 20 supercells of the left domain is designed with a linear ϕ tran-
sition from 0.6π to 1.4π, whereas that of the right domain is assigned
an opposite ϕ transition, i.e., from 1.4π to 0.6π. As for the lower
section with three supercells, ϕ keeps constant at 0.6π and 1.4π
for the left and right domains, respectively. The excitation is
located in the middle of the bottom. Within the lower section of
the surface wave splitter, there exists a localized interface mode.
As the incidence reaches the upper half, because of the opposite gra-
dients of ϕ, the interface mode is split into two components, each
following the typical EBE evolution but tracing opposite paths.
Thanks to topological protection, the propagation is immune
against back reflection from the discontinuity of the upper and
lower sections. Hence, our design, based on phason engineering
and topological pumping, provides an avenue for the application
of elastic surface wave beam splitters. In addition, our design
covers the short-wavelength range such that we have the opportu-
nity to engineer the dispersion with respect to q quasi-momentum.
This involves modulations along the vertical direction and opens up
a new dimension in the design space for surface wave, which is yet to
be explored.

DISCUSSION
In conclusion, we have evidenced the topological surface wave
transport in modulated phononic crystals through edge-to-edge to-
pological pumpings associated with the 2D quantum Hall effects by
the physical rendering of synthetic spaces. These observations imply

that the system is characterized by a non-zero Chern number, and
therefore, the topological pumping is immune to bulk scattering
and exhibits strong protection against design imperfections. The
modulated phononic crystals with synthetic spaces offer a platform
and route for efficient surface wave topological mode transport by
engineering desired patterns on a phason-torus in the finite struc-
ture. The phason space augments the physical space and opens a
door to higher-dimensional physics in acoustics and mechanics. Al-
though we focused on the elastic implementation using synthetic
spaces, our approach can be generalized to other degrees of
freedom, such as additional frequency dimensions can also be har-
nessed for the frequency modulation. Going forward, it will be im-
portant to develop and explore such broader connections, as the
idea of topological matter in synthetic dimensions is very general
and the extension of this approach to other complex orbits is
much awaited. At last, we emphasize that, to achieve a reasonable
adiabatic regime, the number of chains in our experimental
setups is appreciable, and while this is perfectly fine for the demon-
stration purposes, it could be an obstacle for practical applications.
It will be interesting to explore if this strategy can be deployed for
our phononic crystals to reduce the number of chains needed for the
topological pumping of surface wave.

MATERIALS AND METHODS
Sample fabrication
The experimental sample made of aluminum, having Young’s
module E = 69 GPa, Poisson’s ratio ν = 0.33, and density ρ =
2700 kg/m3, is fabricated using the computer numerical control
(CNC) milling machine with a manufacturing precision of 0.02
mm. It consists of an array of resonators (6 mm×3.5 mm×10
mm) with the number of 9 along the x-direction and 20 along the
z direction, which are integrated with a cuboid (150 mm by 50 mm
by 200 mm). For convenience, each resonator has an address (i,j).
Along the x direction, resonators (i,j) and (i + 1, j) are connected by
height-modulated pillars (4 mm by 1.5 mm by hij), which satisfy the
protocol hij = h0[1 + Δ0 cos(2πi/3 + ϕj)], where h0 = 7 mm and Δ0 =
0.15 is the average thickness of horizontal channels. Besides, ϕj = ϕs
+ (ϕf − ϕs)j/N, where ϕs = 0.6π, ϕf = 1.4π, and N = 20. In the z di-
rection, all resonators are connected by pillars of the same size (2
mm by 6.5 mm by 3.8 mm).

Experimental testing
In the experiment, the sample is supported by four points to mimic
the free boundary condition. A piezoelectric ceramic patch is at-
tached to the right side of the cuboid to excite the target eigenmode
state. A wide-spectrum pseudo-random excitation within the
probing ranges from 20 to 50 kHz is generated by a Tektronix
AFG3051C arbitrary waveform generator and amplified by a
Krohn-Hite high-voltage power amplifier, which is lastly applied
across the piezoelectric source. A 1D scanning laser Doppler vibr-
ometer (SLDV, Polytech PSV-500) is used to measure the vibration
velocity of resonators in the y direction, where high-gain reflective
tape is stuck on the surface of each resonator to enhance the reflec-
tion of the laser. The piezoelectric actuators located on the bottom
supercell are used for excitation. The decision to measure the y com-
ponent instead of the dominant z component is motivated by the
presence of neighboring resonators within the measurement area,
which inevitably obstruct the scanning laser of the 1D laser

Fig. 5. Topologically protected surface wave splitter. (A) The schematic of
surface wave pumping system and the corresponding phase modulation func-
tions. (B) The magnitude of total displacement field distribution of the surface
wave splitter. The surface wave is injected at the center of the bottom edge at
the frequency f = 41.88 kHz.
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vibrometer (PSV-500). Consequently, physically measuring the z
component becomes experimentally unfeasible. To ensure satisfac-
tory measurement accuracy and consistency of the y directional dis-
placements across different pillars, we carefully select the middle
point x ¼ ð2i� 1Þa

2 ; y ¼ a; z ¼ t0
2 þ ja � ɛ

h i
along one edge of the

top surface of each pillar as the measurement point, where i = 1,2,
…9, j = 1,2, …20 are the pillar indices, and ε is the radius of the laser
spot approximately equal to 0.25 mm (see the Supplementary Ma-
terials). The velocity signal from the vibrometer is further recorded
by the PSV-500 data acquisition. Note that the experiment is repeat-
ed and averaged five times on each resonator of the system to filter
out part of the noise. The normalized amplitude spectrum obtained
by applying the Fourier transform to the time-domain signals col-
lected at the resonator (2,18) is shown in Fig. 2C. A series of reso-
nant peaks are observed in the frequency range. By checking the
mode shape of each resonance peak in the frequency spectrum,
the EBE state corresponding to the frequency at 42.45 kHz is iden-
tified. Moreover, a full field measurement at 42.45 kHz is conducted
by exciting the system with a harmonic sine excitation, and the same
EBE state is measured.

Numerical simulations
The full-wave finite-element method simulations in this work are all
performed using the commercial software COMSOL Multiphysics.
The material of 3D structure is implemented by Aluminum [solid]
from COMSOL Material Library. Eigenfrequency analysis within
the “Solid Mechanics” is carried out to calculate the eigenfrequen-
cies and eigenmode of the unit cell, supercell, and cuboid. The
boundary conditions for all the cases are set as free boundary con-
ditions except for Floquet periodicity boundary conditions of the
unit cell along x and z direction and of the supercell along z direc-
tion. For the transient analysis in Fig. 3, time-dependent analysis in
the Solid Mechanics is used. Piezoelectric patches (PZT-5H in
COMSOL Material Library) are attached on one side of each reso-
nator of the bottom supercell. The polarization directions of these
piezoelectric patches are identical, while the applied voltages are
distributed as V0φn(0)fz(t).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
Table S1
Legend for movie S1

Other Supplementary Material for this
manuscript includes the following:
Movie S1
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